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The quasi-geostrophic ellipsoidal vortex model

By DAVID G. DRITSCHEL, JEAN N. REINAUD
AND WILLIAM J. MCKIVER

School of Mathematics and Statistics, University of St Andrews, St Andrews, UK

(Received 18 February 2003 and in revised form 17 July 2003)

We present a simple approximate model for studying general aspects of vortex interac-
tions in a rotating stably-stratified fluid. The model idealizes vortices by ellipsoidal
volumes of uniform potential vorticity, a materially conserved quantity in an inviscid,
adiabatic fluid. Each vortex thus possesses 9 degrees of freedom, 3 for the centroid
and 6 for the shape and orientation. Here, we develop equations for the time evolution
of these quantities for a general system of interacting vortices. An isolated ellipsoidal
vortex is well known to remain ellipsoidal in a fluid with constant background rotation
and uniform stratification, as considered here. However, the interaction between any
two ellipsoids in general induces weak non-ellipsoidal perturbations. We develop
a unique projection method, which follows directly from the Hamiltonian structure
of the system, that effectively retains just the part of the interaction which preserves
ellipsoidal shapes. This method does not use a moment expansion, e.g. local expansions
of the flow in a Taylor series. It is in fact more general, and consequently more
accurate. Comparisons of the new model with the full equations of motion prove
remarkably close.

1. Introduction
Vortex interactions are an integral part of the evolution of high-Reynolds-number

fluid flows. In rotating stably-stratified flows such as the atmosphere and the oceans,
vortex interactions often generate larger vortices (as well as smaller fragments and
filaments), e.g. through vortex merger (cf. McWilliams, Weiss & Yavneh 1999;
Dritschel 2002; Reinaud & Dritschel 2002, and references therein). Indeed, it is
principally through such vortex interactions that these flows evolve.

However, vortex interactions are fundamentally nonlinear, and often exceedingly
complex. Little is known analytically, and numerical simulations are too costly to
obtain any comprehensive understanding of the mechanisms involved. The basic
parameter space is huge, and a direct attack is out of the question (cf. Reinaud &
Dritschel 2003).

Here, we present an alternative approximate way forward. The starting point is
the quasi-geostrophic (QG) equations, themselves approximations of the full primitive
equations governing rotating stratified flows (see Simmons & Hoskins 1976; Gill 1982;
Holton 1982, and many others). The QG equations have been widely used in this
context, and capture the main features of these vortically-driven flows (see, e.g.
Dritschel & Viúdez 2003 and references therein). In the QG system, the flow is driven
by a single scalar field called the ‘potential vorticity’ (PV, see Hoskins, McIntyre &
Robertson 1985) which is a materially conserved scalar in the adiabatic inviscid limit
considered here (a relevant limit in the present context). We also consider uniform
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constant values of the Coriolis and buoyancy frequencies, f and N , as in previous
works, and assume the flow is unbounded. These approximations simplify the equa-
tions to PV advection

Dq

Dt
= qt + uqx + vqy = 0, (1.1)

(here and below, the subscripts x, y, z and t denote partial derivatives) where q is the
PV, together with a simple linear inversion

∇2ψ = q (1.2)

for a scalar streamfunction ψ , from which the flow field is obtained by

u(x, t) = (u, v, w) = (−ψy, ψx, 0) (1.3)

– note the lack of vertical motion at this order (first order in Rossby number). In
(1.2), ∇2 is the three-dimensional Laplacian. The above equations are written in a
coordinate system in which the height z has been stretched by N/f . It is through (1.2)
that the system is coupled in z. Note the structural similarity with the two-dimensional
Euler equations written in vorticity–streamfunction form.

These equations still have infinite degrees of freedom, and are nonlinear; a further
simplification is needed. The simplification exploits an exact class of solutions, consist-
ing of ellipsoids of uniform PV, discovered in the geophysical context by Zhmur &
Shchepetkin (1991) and Meacham (1992), and closely paralleling the two-dimensional
elliptical solutions discovered by Kida (1981). In fact, much of the mathematical basis
of these ellipsoidal solutions, excepting (1.3) which is specific to QG theory, stems
from much earlier studies, principally in the eighteenth century, of self-gravitating
ellipsoidal masses, culminating in the work of Chandrasekhar (1969). Recently, these
ellipsoidal solutions have been studied by numerous authors, cf. Meacham et al.
(1994), Meacham, Morrison & Flierl (1997), Miyazaki, Ueno & Shimonishi (1999),
Hashimoto, Shimonishi & Miyazaki (1999), and McKiver & Dritschel (2003).

While a single ellipsoid in a linear background flow is an exact time-dependent
solution of (1.1)–(1.3), multiple ellipsoids are not. The flow field outside one ellipsoid
does not have the correct form to ensure that another ellipsoid will remain precisely
ellipsoidal. An approximation must be made, and the common one made is to use
a truncated moment expansion of this flow field, together with a local Taylor-series
expansion of this truncated flow field about the centre of the ‘target’ vortex – in
effect a double truncation (see Zhmur & Pankratov 1990, and for more background,
Miyazaki, Furuichi & Takahashi 2001). This model again parallels the earlier work
by Melander, Zabusky & Styczek (1986) in the two-dimensional context.

Here, we take a different approach that avoids moment expansions altogether and
arrives at a more accurate model. This approach again has two-dimensional roots in
the ‘elliptical model’ (Legras & Dritschel 1991). That model retains the entire part
of vortex interactions which preserve the elliptical shape of vortices, and uses the
exact form of the vortex-interaction energy. The ‘ellipsoidal model’ introduced here
is developed in the same way. The equations are derived with alarming simplicity
via a Hamiltonian approach, which unifies the self-induced vortex motion and the
externally induced vortex motion, whether it be due to another vortex or to a linear
background flow.

There is just one snag: as in two dimensions, the vortex interaction energy cannot
be evaluated in closed form (it generally involves spatial integrals over elliptical
functions). As in two-dimensions, we overcome this obstacle by introducing a discrete
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approximation: we use a set of singular point vortices to compute the interaction
energy efficiently (in two dimensions, we can show that this is equivalent to Gaussian
quadrature, a very accurate means of integration, see Dritschel & Legras 1991). The
results presented below exhibit rapid convergence with the number of point vortices,
and in practice 7 point vortices are sufficiently accurate. Moreover, we can show that
the moment-based models follow by further approximating the discrete interaction
energy used here in the ellipsoidal model (details given in Appendix C).

In the next section, the ellipsoidal model is derived. Then, in § 3 a discrete appro-
ximation is introduced for evaluating the Hamiltonian, and the discrete equations are
given. A numerical algorithm is outlined in § 4, then the instantaneous and long-term
accuracy of the ellipsoidal model is assessed by comparing it with the full quasi-
geostrophic system. Some current applications of this model to the study of vortex
interactions are described in § 5, ending with some conclusions.

2. Mathematical formulation of the model
In the two-dimensional elliptical and three-dimensional ellipsoidal models, the idea

is to sacrifice the detailed structure of each vortex in order to better understand
their general properties, under much more wide-ranging conditions than can be
feasibly considered by a direct approach. While destructive vortex interactions, such
as vortex merger, cannot be modelled this way, many other important aspects of
vortex interactions, such as the conditions leading to destructive interactions, can be
(Reinaud & Dritschel 2003).

Unique to our model is the use of just one assumption in deriving it: each vortex,
considered to have uniform PV, remains ellipsoidal for all time. In reality, vortex
interactions induce non-ellipsoidal disturbances, so our assumption implies that we
are disregarding a part of the dynamics, hopefully a small part. On the other hand,
the self-induced flow of an ellipsoidal vortex keeps it ellipsoidal (merely rotating it),
and moreover immersing an ellipsoidal vortex in a linear background flow also keeps
it ellipsoidal (though now it may deform in a complicated way).

Here we will follow the matrix representation introduced recently by McKiver &
Dritschel (2003). Each ellipsoid of uniform PV, q , is represented by a symmetric
matrix B and a centre X , in terms of which the surface of the ellipsoid is expressed
by the set of points x satisfying

(x − X)T B−1(x − X) = 1, (2.1)

where the superscript T denotes transpose. The eigenvalues of B are the squared
semi-axis lengths a2, b2 and c2, and the eigenvectors are unit vectors â, b̂ and ĉ
pointing along the corresponding axes. Writing

M = (â b̂ ĉ), (2.2)

we have M−1 = MT , and the useful decomposition B = MEMT , where E is the
diagonal matrix of eigenvalues.

We wish to consider several interacting vortices, but for the moment let us suppose
the velocity field u at the surface of the present ellipsoid {q, X, B} is given, and
moreover that it is linear in x:

u(x, t) = U(t) + S(t)(x − X(t)), (2.3)

where U(t) is an arbitrary vector and S(t) is an arbitrary matrix, called the ‘flow
matrix’. This velocity field is of the most general form which exactly keeps the vortex
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ellipsoidal. The ellipsoid evolves according to

X t = U, (2.4a)

Bt = SB + BST , (2.4b)

(see McKiver & Dritschel 2003). Next, we employ the specific properties of the QG
system. The QG velocity field must satisfy (1.3), which can also be written as

u = L∇ψ or u = L∂ψ

∂x
with L =


0 −1 0

1 0 0
0 0 0


. (2.5)

Therefore, the most general linear QG velocity field must derive from a streamfunction
of the form

ψ(x, t) = F(t) · x + 1
2
xT P(t)x, (2.6)

with F and P related to U and S in (2.3) by

U = LF + SX = L(F + PX), (2.7a)

S = LP, (2.7b)

– in particular, there is no vertical motion (Zt = 0), the bottom row of S is zero, and
tr S = S11 + S22 = 0 (since the flow is non-divergent at each height).

We next use these results to show how the ellipsoidal vortex evolution equa-
tions (2.4) may be derived from a Hamiltonian formalism. In the full QG equations,
the Hamiltonian H is proportional to the total energy E, given by

E =
1

2

∫∫∫
|∇ψ |2 dV (2.8)

(ignoring the infinite energy of any background flow of the form (2.6)). We will adopt
this form also for the ellipsoidal model. In particular, we take

H =
1

4π
E (2.9)

for convenience. Let us now split ψ in (2.8) into a self-induced part ψv and a
background part ψb of the form (2.6), with F = Fb and S = Sb. Ignoring the infinite
energy of the background flow, we may write

H = Hi + Hv, (2.10)

where Hi is the part due to the interaction between the background flow and the
vortex,

Hi =
1

4π

∫∫∫
∇ψv · ∇ψb dV = − 1

4π

∫∫∫
V

qψb dV, (2.11)

(using q = ∇2ψv) and Hv is the self-induced part,

Hv =
1

8π

∫∫∫
|∇ψv|2 dV = − 1

8π

∫∫∫
V

qψv dV (2.12)

(the subscript V denotes integration over the vortex only).
Let us first consider the interaction term Hi . Substituting in the form of ψb from

(2.6) (with subscripts b on F and S), we may readily evaluate Hi as

Hi = −κ
(
Fb · X + 1

2
XT Pb X

)
− 1

10
κPb : B, (2.13)
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where κ ≡ qV/4π = qabc/3 is the vortex ‘strength’, where Pb : B ≡
∑

j

∑
k PbjkBjk

denotes the scalar product of the two matrices, and where we have used the fact that

B =
5

V

∫∫∫
V

(x − X)(x − X)T dV. (2.14)

It follows that

∂Hi

∂X
= −κ(Fb + Pb X), (2.15a)

∂Hi

∂B = − 1
10

κPb, (2.15b)

and comparing with (2.7), we see that

Ub = − 1

κ
L∂Hi

∂X
, (2.16a)

Sb = −10

κ
L∂Hi

∂B , (2.16b)

in (2.4). Note in particular that the background streamfunction matrix is given by

Pb = −10

κ

∂Hi

∂B . (2.17)

Next consider the self-induced part of the Hamiltonian, Hv . The streamfunction
inside the vortex takes the form (Laplace 1784)

ψv = C + 1
2
(x − X)T Pv(x − X), (2.18)

where Pv = MDMT and D is a diagonal matrix with

D11 = κRD(b2, c2, a2), (2.19a)

D22 = κRD(c2, a2, b2), (2.19b)

D33 = κRD(a2, b2, c2), (2.19c)

– RD being the elliptic integral of the second kind – and where C is given by

C = − 3
2
κRF (a2, b2, c2) (2.20)

– RF being the elliptic integral of the first kind (see Appendix A). This constant is
required to match ψv at the boundary of the ellipsoid with the decaying outer solution,
which tends to ψv = −κ/r as r = |x − X | → ∞. Note that the inner solution is exactly
quadratic, so once again the Hamiltonian Hv (2.12) can be readily evaluated:

Hv = 3
4
κ2RF (a2, b2, c2) − 1

20
κPv : B, (2.21a)

= 3
4
κ2RF (a2, b2, c2) − 1

20
κD : E, (2.21b)

= 3
5
κ2RF (a2, b2, c2), (2.21c)

using a2RD(b2, c2, a2) + b2RD(c2, a2, b2) + c2RD(a2, b2, c2) = 3RF (a2, b2, c2) in the last
line. Now, by direct calculation (see Appendix A), we may show that

Pv = −10

κ

∂Hv

∂B , (2.22)

which is identical in form to (2.17), and can be inferred from the Hamiltonian analysis
of Meacham et al. (1997), whereas ∂Hv/∂X = 0, confirming that there is no self-
induced motion of the vortex centre (Uv = 0). Therefore, the self-induced vortex
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motion is obtained from the Hamiltonian in precisely the same way as the background-
induced motion.

This is no accident. No other relationships are consistent with the required
Hamiltonian structure of the ellipsoidal model. The model – for any number of
vortices – must satisfy the basic evolution equations (2.4) together with

U = − 1

κ
L∂H

∂X
, (2.23a)

S = −10

κ
L∂H

∂B , (2.23b)

for each vortex. Here, H is the full Hamiltonian, including all vortex-interaction terms
(analogous to Hi above). That is, there is a single framework for all aspects of the
model.

The form of Hi for a pair of vortices {q, X, B} and {q ′, X ′, B′} is

Hi =
1

4π

∫∫∫
∇ψv · ∇ψ ′

v dV (2.24a)

= − 1

4π

∫∫∫
V

qψ ′
v dV = − 1

4π

∫∫∫
V ′

q ′ψv dV ′ (2.24b)

=
q ′q

16π2

∫∫∫
V ′

dV ′
∫∫∫

V

dV
1

|x ′ − x| , (2.24c)

using the Green function integral form of the streamfunction, i.e.

ψv(x ′) = − q

4π

∫∫∫
V

dV

|x ′ − x| . (2.25)

In these expressions, the volume integrals are over the respective ellipsoids only.
Now, however, Hi cannot be evaluated in closed form, and recourse must be
made to a discrete approximation (outlined in the following section); but whatever
approximation is used, the ellipsoidal motion induced by Hi is still given by (2.16).

3. The discrete ellipsoidal model
We next approximate Hi in a novel way by seeking an efficient numerical quadrature

formula which accurately approximates the volume integrals. This was previously done
in the two-dimensional elliptical model (Legras & Dritschel 1991), where Gaussian
quadrature along the line connecting the foci of each interacting ellipse was found to
be optimal.

By analogy with the two-dimensional problem, we expect that the quadrature
formula can be obtained by approximating the external streamfunction ψv of an
ellipsoidal vortex by that due to a discrete set of appropriately chosen singular point
vortices, i.e.

ψv(x ′) = −
n∑

j=1

κj

|x ′ − xj | , (3.1)

where the xj are their locations and the κj are their strengths. The problem is to find
the xj and the κj , for given n, which best approximates (2.25) outside of the ellipsoid.

In particular, we demand that the far-field behaviour of ψv be as accurate as
possible. As r = |x ′ − X | → ∞, we may show that

ψv(x ′) = −κr−1 + M3(φ, λ)r−3 + M5(φ, λ)r−5 + O(r−7), (3.2)
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where φ and λ are co-latitude and longitude variables defined by x ′ − X = r(sin φ cos λ,
sin φ sin λ, cos φ) and M3, M5, etc., are known functions depending also on the shape
of the ellipsoid (details omitted). In the two-dimensional problem, the analogous
expansion was shown to be equivalent to that of a certain vortex sheet (a line of
infinite PV) connecting the two foci of the ellipse (Legras & Dritschel 1991). This
meant that the exterior flow could be approximated simply by discretizing this sheet
into a finite number of point vortices. In the three-dimensional problem here, the
analogue is a two-dimensional elliptical sheet confined to the middle-major axis plane
(spanned by the unit vectors b̂ and ĉ), i.e.

�2 =
ỹ2

b2 − a2
+

z̃2

c2 − a2
< 1 (a � b � c), (3.3)

where ỹ = b̂ · (x − X) and z̃ = ĉ · (x − X). Moreover, the PV density of the sheet is

σ (�) =
6κ

ητ

√
1 − �2, (3.4)

where η2 = b2 − a2 and τ 2 = c2 − a2 (this result may be derived from a theorem
originally due to Maclaurin (1742) and extended by Laplace (1784) to three unequal
axis lengths; see p. 49 of Chandrasekhar (1969) and Appendix B for further details).
This sheet is known as the ‘focal ellipse’ (Khavinson & Shapiro 1989), and it is the
focal ellipse for an entire ‘confocal family’ of ellipsoids spanned by a parameter χ:

x̃2

a2 + χ
+

ỹ2

b2 + χ
+

z̃2

c2 + χ
� 1 (−a2 � χ < ∞), (3.5)

where x̃ = â · (x − X). All members of this family with −a2 � χ < 0 induce the same
flow field outside the original ellipsoid with χ = 0, if we scale the PV by the factor

abc/
√

(a2 + χ)(b2 +χ)(c2 + χ) so as to keep κ invariant (this is Maclaurin’s theorem).
Thus, by analogy with the two-dimensional problem, the locations of the point

vortices xj and their strengths κj , j = 1, 2, . . . , n, may be determined simply by
matching the spatial moments of the focal ellipse up to a certain order. These
moments involve only even powers of ỹ and z̃ due to symmetry; they are defined by

µk,
 =
1

4π

∫∫
σ (�)ỹ2kz̃2
 dỹ dz̃

≡ κη2kτ 2
Wk+
Θk,
, (3.6)

where

Wm = 3

∫ 1

0

�2m+1
√

1 − �2 d�, (3.7a)

Θk,
 =
1

2π

∫ 2π

0

cos2k θ sin2
 θ dθ. (3.7b)

Here, m =0, 1, 2, . . . denotes the order of the moment, and generally there are m +1
moments at each order (k + 
 = m). For the first few orders, we find W0 = 1, W1 = 2/5,
W2 = 8/35, and in general Wm = 2m/(2m + 3)Wm−1. Similarly, for the angular integrals,
Θ0,0 = 1, Θ1,0 =Θ0,1 = 1/2, Θ2,0 = Θ0,2 = 3/8, Θ1,1 = 1/8, etc. Using

Θm,0 =
1 × 3 × . . . × (2m − 1)

2 × 4 × . . . × (2m)
(3.8)
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Figure 1. The order-0 model.

Figure 2. The order-1 model.

for m > 0, together with Θk,
 = Θ
,k and Θk+1,
 + Θk,
+1 = Θk,
, we can find any value
of Θk,
 recursively.

The corresponding moments for a set of point vortices confined to the middle-major
axis plane are

µk,
 =

n∑
j=1

κj ỹ
2k
j z̃2


j , (3.9)

where ỹj = b̂ · (xj − X) and z̃j = ĉ · (xj − X). There are also moments involving odd
powers of ỹj and z̃j , and to ensure that these all vanish, we must choose the points ỹj

and z̃j symmetrically, i.e. if ỹj �= 0, there must be another point with ỹi = −ỹj having
κi = κj , and likewise for z̃j �=0. This means that we can either have a single point at the
origin ỹj = z̃j =0, a pair lying on either the ỹ or the z̃ axis, or a quartet with both ỹj

and z̃j non-zero. Here, for reasons of computational efficiency, we want to determine
the minimum number of point vortices n needed to match all moments of the exact
elliptic sheet (3.6) up to a given order m. To do this requires the simultaneous solution
of a set of algebraic equations (mth degree polynomials in ỹ2

j and z̃2
j ) of growing

complexity, and we have not been able to find the general solution for arbitrary m.
Fortunately, however, the solutions for just m =1 or 2 are sufficiently accurate in
practice that nothing more is required (see § 5 below).

We summarize next the solutions for orders m =0 to 3.

m =0. Here only one point vortex is needed (figure 1):
• κ1 = κ at � = 0.

m =1. Here, n= 4 point vortices are needed (figure 2):
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Figure 3. The order-2 model.

Figure 4. The order-3 model.

• a quartet with κj = κ/4 on the ring � =
√

2/5, i.e.

ỹj = η� cos θj , z̃j = τ� sin θj ,

with either θj = jπ/2 or jπ/2 − π/4.
The configuration on the right proves to be more accurate in terms of its re-

presentation of ψ exterior to the ellipsoid (as measured by comparing with the exact
solution in Chandrasekhar 1969).

m = 2. Here, n= 7 point vortices are needed (figure 3):
• a sextet with κj = 7κ/60 equally spaced in θj on the ring � =

√
4/7, with either

θj = jπ/3 or jπ/3 − π/6, plus
• a point vortex at the origin � = 0 with κ7 = 3κ/10.
The configuration on the right proves to be more accurate in practice.

m = 3. Here, n= 13 point vortices are needed (figure 4):
• an outer sextet with κj = (18 − 19

√
2/3)κ/280 	 0.008880589κ equally spaced in

θj on the ring � = [(4 + 2
√

2/3)/5]1/2 	 1.06141351, plus
• an inner sextet with κj =(18+19

√
2/3)κ/280	0.119690839κ equally spaced in θj ,

but shifted by π/6 with respect to the outer sextet, on the ring � = [(4 − 2
√

2/3)/5]1/2 	
0.68804169, plus

• a point vortex at the origin � = 0 with κ13 = 8κ/35 	 0.228571429κ .
Again, the configuration on the right proves to be more accurate in practice.
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Note that the residual error in ψ is O(r−(2m+3)) when moments are matched to order
m. This has been verified by comparing the discrete approximation to ψ (3.1) with the
exact result involving elliptic integrals (Laplace 1784) given by (B 1) in Appendix B.

In the ellipsoidal model, we need to integrate ψ(x ′) over the volume of another
ellipsoid to determine the interaction energy Hi – see (2.24c). As in the two-dimensional
elliptical model, we use the same quadrature formula to carry out this integration
(even though all the quadrature points lie in the middle-major axis plane), since this
preserves the symmetry of Hi (and therefore preserves all conservation laws of the
original system). The resulting discrete form of Hi used in the model is

Hi =

n∑
i=1

n∑
j=1

κ ′
i κj

|x ′
i − xj | , (3.10)

where x ′
i = X ′ + ỹ ′

i b̂
′
+ z̃′

i ĉ
′ and xj = X + ỹj b̂ + z̃j ĉ. This expression is identical to the

Hamiltonian for a system of independent point vortices. In the ellipsoidal model,
however, the point vortices are not independent, since they are constrained to move
with each ellipsoid.

In Appendix C, we show that the ‘ellipsoidal moment model’ of Miyazaki et al.
(2001) may be derived by expanding Hi about the centroid separation R = X ′ − X , i.e.
using x ′

i − xj = R + r ij , where r ij is the remainder, presumed small compared to R,
then expanding Hi to second order in r ij /|R|. The resulting expression is independent
of the number of point vortices n and therefore applies as n → ∞.

4. The numerical algorithm
A brief sketch of the numerical algorithm developed for the ellipsoidal model is

provided next.
Initialization. The order m is selected and the constant values of κj/κ , ỹj /η and

z̃j /τ are stored. These are independent of the vortex strength κ , shape B and position
X . The number of ellipsoids is read in, and then q , B and X are read in for each
ellipsoid. The time step 
t is selected (see below).

(i) Self-induced motion. At the beginning of each time step, a 3 × 3 eigenvalue
problem is solved for each ellipsoid to determine the eigenvalues a2, b2 and c2,
and the associated (unit) eigenvectors â, b̂ and ĉ from the shape matrix B. These
eigenvectors make up the rotation matrix M, see (2.2). From a2, b2 and c2, the elliptic
integrals in (2.19) are computed to give Pv = MDMT and hence the self-induced flow
matrix Sv = LPv needed for the evolution of B, cf. (2.4). There is no self-induced
contribution to X t . Some preparatory work is done for the following step, such as
computing the point vortex locations xj within each vortex.

(ii) Interaction between separate vortices. Next, all pairs of distinct vortices, {q, X, B}
and {q ′, X ′, B′}, are considered. The derivatives of Hi with respect to X and B are
calculated explicitly (see Appendix D) to give Ub and Sb from (2.16).

(iii) Time integration. The above contributions (i) and (ii) to U and S are summed
together, then the right-hand side of (2.4b) is computed for each vortex separately,
and the values of X and B are updated using a fourth-order Runge–Kutta numerical
integrator.

The time step 
t is chosen to be less than or equal to π/(10|q|max), where |q|max is the
maximum PV magnitude. Smaller time steps are used for longer integrations, to keep
the accumulated error (∝ Tsim
t4, where Tsim is the duration of the simulation) small.
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5. Numerical results
We have performed a series of tests to check the consistency and accuracy (with

respect to the full QG equations) of the numerical algorithm. We have verified that
the energy, or H , is conserved within errors expected from the time-stepping scheme
(the error decreases like 
t4), for long integrations starting with various unsteady
asymmetric configurations of two or more vortices. The model also conserves the
angular momentum Jtot, or impulse, to which each vortex contributes

J =

∫∫∫
V

q(x2 + y2) dV, (5.1a)

= 4πκ
(
X2 + Y 2 + 1

5
(B11 + B22)

)
. (5.1b)

This is also conserved to within time-stepping errors. The model exactly conserves the
linear momentum I tot, or impulse, to which each vortex contributes

I =

∫∫∫
V

qx dV, (5.2a)

I = 4πκX . (5.2b)

This follows from the symmetric form of Hi in (3.10) and (D 1). Finally, the model
conserves the volume (proportional to abc = |B|1/2) of each vortex, again to within
time-stepping errors.

The next test compares the predictions of the ellipsoidal model and of the full QG
equations for the initial tendencies X t and Bt in an example of two closely interacting
ellipsoids. This is a non-trivial comparison since, in the full QG equations, the flow
does not exactly preserve ellipsoidal shapes. Here, we are measuring how well the
ellipsoidal model captures the ellipsoidal deformations induced by the exact (QG)
dynamics.

The base configuration consists of nearly touching vortices, each having moderate
deformation and more-or-less arbitrary orientation. Each vortex has the same PV,
q = q ′ = 4π, while the centres are chosen as X = (−0.7, −0.5, −0.3) and X ′ = (0.6,
0.6, 0.3). The shape matrices B and B′ are generated from specified axes lengths
(a, b, c) and Euler angles (α, β, γ ) as follows:

â = (cos β cos α cos γ − sin α sin γ, cos β sin α cos γ + cos α sin γ, − sin β cos γ ),

b̂ = (− cos β cos α sin γ − sin α cos γ, − cos β sin α sin γ + cos α cos γ, sin β sin γ ),

ĉ = (sin β cos α, sinβ sin α, cosβ),

B = a2 ââT + b2 b̂b̂
T

+ c2 ĉĉT
, (5.3)

and similarly for B′. Here we take (a, b, c) = (0.6, 0.8, 1.0), (α, β, γ ) = (20◦, 40◦, 60◦),
(a′, b′, c′) = (0.5, 0.8, 1.1), and (α′, β ′, γ ′) = (30◦, 50◦, 70◦). The resulting configuration
is shown in figure 5 from two perspectives to emphasize just how close the two
vortices are.

To compare with the full QG dynamics, we use the contour surgery algorithm
(referred to as contour dynamics hereinafter), described in the appendix to Dritschel
(2002). In this algorithm, the fluid is modelled by a fixed number of layers nlay within
which the PV contours bounding the vortices move horizontally. All fields, like the PV
and the velocity field u, are vertically averaged over each layer. This averaging results
in an error of O(n−2

lay). In addition, there are errors associated with the finite point
spacing along the PV contours in each layer. We have ensured that the maximum
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(a) (b)

Figure 5. (a) Top and (b) side views of the base configuration. The side view is from a
longitude of −60◦ (between the positive x and negative y axes) in the equatorial plane z = 0.
The minor axis is rendered as a bold line, while the middle and major axes are rendered as
thin lines. Ellipses are drawn on the surface of each ellipsoid in planes perpendicular to the
major axis, and dashed lines are used for the far sides of each ellipsoid.

point spacing µL is no larger than the layer thickness, where µ is a dimensionless
parameter and L is the largest axis length in either ellipsoid at the initial time.

In normal applications, a small to moderate number of layers (20–40) is usually
sufficient to obtain reasonably accurate simulation results. Here, however, we have
had to use a much larger number of layers, nlay = 1000, owing to the unexpectedly
high accuracy of the ellipsoidal model. Correspondingly, we have taken µ = 0.006,
giving a total number of contour points of nearly 770 000. Just to compute the velocity
field once took nearly 5 days of computer time on a 500 MHz alpha processor (the
cost of contour dynamics is proportional to the square of the number of points).

This velocity field, specifically u at all contour points x = x̄ lying on the surface of
the ellipsoid {q, X, B}, is used to calculate X t and Bt at the initial instant of time.
This is done using the contour integral representations of X and B, namely

X =
2
z

3V

nlay∑

=1

∮
x̄
(x̄
 dȳ
 − ȳ
 dx̄
), (5.4a)

B =
5
z

4V

nlay∑

=1

∮
(x̄
 − X)(x̄
 − X)T (x̄
 dȳ
 − ȳ
 dx̄
), (5.4b)

where 
z is the layer thickness, x̄
 is a point on the contour in layer 
 and V is the
volume of the vortex, computed from

V =
1

2

z

nlay∑

=1

∮
(x̄
 dȳ
 − ȳ
 dx̄
). (5.5)

The tendencies are found by taking a time derivative of (5.4) and substituting
dx̄
/dt = u(x̄
), the velocity at each contour point. The contour integrals are computed
by two-point Gaussian quadrature along cubic splines connecting the original set of
contour points; we have taken care to evaluate u directly at these quadrature points
to avoid additional interpolation errors.

The initial contours are found by first shifting and dilating the configuration so that
it lies in the range 0 � z � 1. Contours are then created by intersecting the mean height
of each layer with the ellipsoids. From these contours, we recalculate X , X ′, B and
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Figure 6. Differences between the ellipsoidal model at various orders m and the full QG
dynamics (using contour dynamics with 1000 layers): (a) the centroid tendency error |
X t |,
and (b) the shape matrix tendency error |
Bt |, versus the dimensionless vortex separation
d/R.

B′ using (5.4) for use in the ellipsoidal model to give the closest possible comparison.
We also calculate X t and Bt in both contour dynamics and the ellipsoidal model.
Error is measured by the r.m.s. differences (or L2 norms) |
X t | and |
Bt |.

Several other configurations differing only in the initial centroid separation X − X ′

have also been examined to determine how |
X t | and |
Bt | depend on the distance
between the vortex centres d = |X − X ′|. These other configurations are obtained by
multiplying X and X ′ by a sequence of magnification factors: 1.1, 1.2, . . . , 1.5. The
results are summarized in figure 6, which plots |
X t | and |
Bt | versus d/R (in
log–log scaling), where R = (abc)1/3 is the mean radius of the larger vortex, for the
ellipsoidal model at orders m =0, 1, 2 and 3 (using, respectively, n= 1, 4, 7 and 13
point vortices per vortex to represent the interaction). Note that in these plots, the
errors have been scaled to correspond to the original configurations (before fitting
them into 0 � z � 1); in particular, the vortex volumes are independent of d/R. For
a given order m, |
Bt | ∼ 10|
X t |, indicating that the shape evolution is less reliable
than the centroid evolution. This is sensible since X corresponds to a lower-order
spatial moment, V −1

∫∫∫
V

x dV , than does B, see (2.14). However, half of this difference
may be due to the definition of B as 5 times the second-order spatial moment. Both
|
X t | and |
Bt | decrease in all cases as fast or faster than (R/d)2m+4 (not shown),
which is the error expected from the expansion (3.2) for large d/R (with r ∼ d). Also,
the errors for m > 0 are remarkably small, even for nearly touching vortices. The
error is only ∼ 10−3 for m =2. This level of error is comparable with or less than
the error associated with contour dynamics using a normal number of layers. When
m = 3, the error in the ellipsoidal model is so small that not even 1000 layers is
sufficiently accurate in contour dynamics to measure it – note the saturation of error
for d/R>∼ 2.8.

The exceptional case is m =2: here the error decreases nearly as fast as for m =3,
and perhaps this is because the point vortex configuration for m =2 is not very
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different from that for m =3, compare figures 3 and 4, and recall that the outer sextet
of vortices in figure 4 have only 7% of the strength of the inner sextet. Indeed, if
we compare the circulations of the inner sextet for m =3 with those of the sextet
for m = 2, we find that they differ by only 2.5% while the ring radius � differs by
9%. Moreover, the m =2 configuration comes within 18.6% (in r.m.s. terms) of the
numerical constants Wk+
Θk,
 multiplying sixth-order moment coefficients µk,
, with
k + 
 =3, in (3.6). It is fortuitous that just 7 point vortices can model the dynamics
of interacting ellipsoids so well.

We next examine the differences between the ellipsoidal model and contour
dynamics in the evolution of the flow. These same six configurations were integrated to
t = 20 (note that the period of rotation of an isolated spherical volume having q = 4π is
6π/q = 1.5). In the contour dynamics simulations, the vortices develop non-ellipsoidal
disturbances, and we are interested in finding out how much these disturbances matter
in terms of the prediction of the vortex centres and mean ellipsoidal shapes. Note,
for the configurations having a magnification less than or equal to 1.3 (d/R<∼ 3.0),
the vortices actually merge in contour dynamics, making it difficult to compare with
the ellipsoidal model thereafter. The case 1.3 exhibits only momentary merging, and we
are able to compare before and after the period when the vortices are joined together.

In all of the contour dynamics simulations, we used 50 layers and µ =0.12, because
of computational limitations. A greater number of layers would improve the com-
parisons shown below, but they are in any case indicative. The first comparison focuses
on a case without any merging, magnification 1.4 (d/R ≈ 3.228). Four ellipsoidal
simulations, differing only in the order m, are compared with the contour dynamics
simulation, shown in figure 7 together with the ellipsoidal model simulation for
m =2. Note that the contour dynamics simulation required 4785 s on a 500 MHz
alpha processor, while the ellipsoidal model (for m =0, 1, 2 and 3) required just 0.588,
0.633, 0.688 and 0.919 s. The two simulations agree remarkably well, despite clear
non-ellipsoidal deformations, even filamentation, in the contour dynamics simulation.
We quantify this by measuring the joint r.m.s. error in X and X ′, defined by

|
X |2m = 1
2
(|Xm − XCD|2 + |X ′

m − X ′
CD|2), (5.6)

where a subscript m refers to the ellipsoidal model at order m and a subscript CD
refers to contour dynamics. The joint r.m.s. error in B and B′ is defined similarly (in
terms of differences in the components). The time evolution of the differences |
X |m
and |
B|m is shown in figure 8. Note that in the same norm |B| ≈ 1.318 at t = 0, so
the late-time errors |
B|m for m = 2 and m = 3 are approximately 15%. The centroid
errors are considerably smaller, only about 2.0% of the initial centroid separation
between the vortices and about 6.4% of the radius of the largest vortex. (Part of this
may be due to the factor of 5 in (2.14) as discussed above.) Order m = 0 clearly stands
out – this model is too crude to capture the ellipsoidal deformations which contribute
significantly to the dynamics, as can be seen by the close comparison for m > 0. With
increasing order, the differences diminish, but the errors in the contour dynamics
simulation are too great to distinguish m =2 and m = 3. Another interpretation is
that the remaining differences, mostly due to non-ellipsoidal deformations (see below),
cannot be significantly reduced by increasing the order of the ellipsoidal model beyond
m =2. Yet, clearly there is an advantage of using m =2 over m =1.

In a final comparison, we fix the order of the ellipsoidal model at m =2 and examine
how the ellipsoidal model compares with contour dynamics for the 6 magnifications,
1.0–1.5. Figure 9 plots the time evolution of the differences |
X |m and |
B|m,
over time intervals when the vortices are separated (this is only a short time for
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(a)

(b)

(c)

(d)

Figure 7. Comparison of the QG contour dynamics simulation (a, c) and the ellipsoidal
model simulation for m= 2 (b, d) at times t =0, 4, 8 (a, b) and t =12, 16 and 20 (c, d), for the
magnification 1.4 case. The vortices are viewed orthographically, at an angle of 60◦ from the
vertical, and in the plane y = 0. The contours in the QG simulation lie in horizontal planes
(here 50 layers are used altogether). In the ellipsoidal model simulation, the ellipsoids are
rendered as described in figure 5.

magnifications 1.0–1.2). The differences rapidly diminish as expected with increasing
magnification, or d/R, even though the vortices in the contour dynamics simulations
exhibit strong non-ellipsoidal deformations, even for magnification 1.5 (d/R ≈ 3.458).
The ellipsoidal model appears to be a remarkably good predictor of the ellipsoidal
component of the dynamics for non-merging vortices.

The non-ellipsoidal deformations evidently feed back only very weakly on the
ellipsoidal component of the dynamics. To check this feedback, we have compared
the ellipsoidal model with contour dynamics for all six magnifications at early times,
before merger. During this time, non-ellipsoidal disturbances are growing, and while
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Figure 8. Time evolution of the differences between the ellipsoidal model at various orders
m and the full QG dynamics (computed by contour dynamics with nlay = 50, see figure 7).
The line styles are as follows: m= 0 short-dashed, m= 1 long-dashed, m= 2 thin-solid, m= 3
bold-solid.
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Figure 9. Time evolution of the differences between the ellipsoidal model at order m= 2 and
the full QG dynamics for various magnifications: 1.0 bold, 1.1 thin, 1.2 short-dashed, 1.3
long-dashed, 1.4 bold, and 1.5 thin. Note that the curves for the first three magnifications exist
only near t = 0, while the fourth has a break between t = 0.8 and 2.5 when the two initial
vortices are joined together in a dumbbell shape.

they are not yet at peak amplitude, their existence is sufficient to estimate the way in
which the feedback depends on the distance d between vortex centres. Let d0 denote
the distance between vortex centres in the original, unmagnified case (d0 ≈ 2.306R).
Then d/d0 gives the magnification. The feedback is quantified by computing the r.m.s.
values of |
X |m and |
B|m over 0 � t � 0.4 and for orders m =2 and 3. The original
50-layer contour dynamics simulations proved too inaccurate for this comparison
(the |
X | error saturates for d/d0 = 1.4 and 1.5), so the resolution was increased
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Figure 10. The dependence of the early-time r.m.s. differences |
X |rms and |
B|rms between
the full QG dynamics and the ellipsoidal model at order m= 2 (thin solid lines) and at order
m= 3 (bold solid lines). Two slopes proportional to (d/d0)

−12 are also indicated by the dashed
lines.

four-fold to 200 layers (and µ = 0.03). These higher-resolution simulations were run
only until t = 0.4, requiring about 5 hours of computer time per run. The results are
shown in figure 10, in log–log scaling, together with two lines corresponding to a
constant × (d/d0)

−12. This dependence, on the minus twelfth power of the distance
between vortex centres, is surprisingly steep. (The saturation of |
X |rms for larger
d/d0 is believed to be due to an insufficient number of layers in the contour dynamics
simulation.) There is little difference between m =2 and m =3, so what we see here
is truly a measure of the effect of non-ellipsoidal deformations on the ellipsoidal
component of the dynamics. This dependence decays very rapidly indeed with vortex
separation.

At later times, the dependence on d/d0 may become much shallower, but for
the present examples it is difficult to quantify since the flow evolution is strongly
dependent on d/d0, with merging at small distances.

6. Concluding remarks
In this paper, we have derived a simplified model for vortex interactions in rotating

stratified flows, in the quasi-geostrophic regime. The single assumption in our model
is that each vortex has an ellipsoidal shape, tantamount to replacing the infinite
degrees of freedom of the original system by just 9 degrees of freedom per vortex.
We then showed how the Hamiltonian structure of the full equations can be carried
over to the reduced, ellipsoidal model, and that this structure is sufficient to generate
the dynamical evolution equations for the model.
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The exact Hamiltonian, however, cannot be evaluated efficiently, and instead a
discrete ‘point-vortex’ approximation was introduced to calculate the interaction
Hamiltonian. In numerical tests, this was shown to be very accurate for as few as
7 point vortices per ellipsoid. In fact, there appears to be no reason to use more
point vortices, since non-ellipsoidal deformations (neglected in the model) prove to
be more important than the accuracy of the point-vortex approximation. However,
7 point vortices capture the fourth and much of the sixth-order spatial moments
of the ellipsoid, showing that these moments are important for the accuracy of the
model. These moments are neglected in the ellipsoidal moment model derived by a
Taylor-series expansion (Miyazaki et al. (2001); see also Appendix C).

The high accuracy of the ellipsoidal model found here in non-trivial vortex
interactions has motivated a comprehensive study of the conditions leading to strong
vortex interactions such as merger (Reinaud & Dritschel 2003). The entire parameter
space, for two ellipsoids, depends on 6 parameters: the PV ratio, the volume ratio,
each height-to-width aspect ratio, the horizontal and the vertical offsets. So far we
have a complete picture only for like-signed vortices having unit PV ratio.†

The elliptical model in two-dimensions and the present ellipsoidal model appear to
be members of a hierarchy of models of increasing spatial dimension. Though the
details have not been worked out in full, many of the results presented here genera-
lize readily to any dimension N (using N -dimensional vectors and N × N matrices).
We suspect also that the existence of a confocal family of ellipsoids (discussed in
Appendix B) having the same exterior flow, which is true for both N = 2 and 3,
also generalizes (which has direct consequences for the point vortex approximation).
Furthermore, the exterior solution to Laplace’s equation found by Laplace (1784)
(stated in Appendix B) also appears to generalize (the solution reduces to the two-
dimensional one in the appropriate limit), apart from a numerical factor evidently
related to the volume of a sphere in N dimensions.

Support for this research has come from the UK Engineering and Physical Sciences
Research Council (grant number GR/N11711). We wish to thank Michael Dritschel
and Darren Crowdy for directing us to several useful references.

Appendix A. Relations among elliptic integrals
Let


 =
√

(t + α)(t + β)(t + γ ), (A 1)

where α, β and γ are positive constants. The elliptic integral of the first kind is

RF (α, β, γ ) =
1

2

∫ ∞

0

dt



. (A 2)

Differentiation with respect to α, β and γ generates the elliptic integral of the second
kind

RD(β, γ, α) = −6
∂RF

∂α
=

3

2

∫ ∞

0

dt

(t + α)

, (A 3a)

RD(γ, α, β) = −6
∂RF

∂β
=

3

2

∫ ∞

0

dt

(t + β)

, (A 3b)

† Some examples, including opposite-signed vortices, may be seen at www-vortex.mcs.st-and.
ac.uk/∼dgd/ELM.
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RD(α, β, γ ) = −6
∂RF

∂γ
=

3

2

∫ ∞

0

dt

(t + γ )

. (A 3c)

From the above expressions, and using d(t/
) = dt/
 − td
/
2 together with

d
 = 1
2



(
1

t + α
+

1

t + β
+

1

t + γ

)
dt, (A 4)

it is straightforward to show that

αRD(β, γ, α) + βRD(γ, α, β) + γRD(α, β, γ ) = 3RF (α, β, γ ). (A 5)

We next use these results to prove

Pv = −10

κ

∂Hv

∂B (A 6)

for Pv = MDMT with D the diagonal matrix

D11 = κRD(b2, c2, a2), (A 7a)

D22 = κRD(c2, a2, b2), (A 7b)

D33 = κRD(a2, b2, c2), (A 7c)

and for

Hv = 3
5
κ2RF (a2, b2, c2). (A 8)

Consider

∂RF

∂B =
∂a2

∂B
∂RF

∂a2
+

∂b2

∂B
∂RF

∂b2
+

∂c2

∂B
∂RF

∂c2
. (A 9)

To compute derivatives with respect to the matrix B, we follow the procedure intro-
duced by McKiver & Dritschel (2003). We represent B by 6 independent components
as

B =


B1 B2 B3

B2 B4 B5

B3 B5 B6


=

6∑
k=1

BkJk. (A 10)

where

J1 =


1 0 0

0 0 0

0 0 0


 J2 =


0 1 0

1 0 0

0 0 0


 J3 =


0 0 1

0 0 0

1 0 0


 , (A 11a)

J4 =


0 0 0

0 1 0

0 0 0


 J5 =


0 0 0

0 0 1

0 1 0


 J6 =


0 0 0

0 0 0

0 0 1


 . (A 11b)

Now, since ∂B/∂Bk = Jk , and using the eigen-relations Bâ = a2 â, etc., together with

the complementary relations âT B = a2 âT , where â, b̂ and ĉ are orthonormal vectors,
we find

∂a2

∂Bk
= âT Jk â,

∂b2

∂Bk
= b̂

T Jk b̂,
∂c2

∂Bk
= ĉT Jk ĉ. (A 12)

Combining these results with (A 3), we find

∂RF

∂Bk
= − 1

6
(RD(b2, c2, a2)âT Jk â + RD(c2, a2, b2)b̂

T Jk b̂ + RD(a2, b2, c2)ĉT Jk ĉ). (A 13)
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On the other hand, contracting Pv = MDMT with the matrices Jk gives

Pv : Jk = (D11 âT Jk â + D22 b̂
T Jk b̂ + D33 ĉT Jk ĉ), (A 14)

where we have used M = (â b̂ ĉ). Taking into account the additional factors in (A 6),
(A 7) and (A 8), we may verify

Pv : Jk = −10

κ

∂Hv

∂Bk
, (A 15)

which is equivalent to (A 6).

Appendix B. The focal ellipse and Maclaurin’s theorem
Laplace (1784) derived the following formula for the flow external to an ellipsoid

in standard position (â = êx , b̂ = êy , ĉ= êz):

ψ(x) = −3κ

4

∫ ∞

λ

du√
(u + a2)(u + b2)(u + c2)

(
1 − x2

u + a2
− y2

u + b2
− z2

u + c2

)
, (B 1)

where λ is the largest root of the cubic equation

x2

λ + a2
+

y2

λ + b2
+

z2

λ + c2
= 1. (B 2)

Now consider the confocal family of ellipsoids

x2

χ + a2
+

y2

χ + b2
+

z2

χ + c2
� 1, (B 3)

for −a2 � χ � 0. If we substitute u = ũ +χ and λ= λ̃+ χ in (B 1) and (B 2), the value

of ψ(x) is unaltered. If next we subtitute ã =
√

χ + a2, b̃ =
√

χ + b2 and c̃ =
√

χ + c2,
the value of ψ(x) remains unaltered, but now we recover (B 1) and (B 2) with a → ã,
b → b̃, and c → c̃. This proves that the entire confocal family (B 3) has the same
flow ψ(x) outside of the original ellipsoid with χ =0. This result is originally due to
Maclaurin (1742), see Chandrasekhar (1969).

We require κ to be constant in (B 1). Since κ = qabc/3, the PV q̃ of a member of
the confocal family must satisfy q̃ = qabc/ãb̃c̃.

The limiting case χ → −a2 corresponds to the focal ellipse, i.e. ã → 0. In this limit,
q̃ → ∞, giving a sheet distribution of PV lying in the middle-major axis plane (here
x = 0). The PV density σ (y, z) is defined by the x integral of the PV across the limiting
ellipsoid χ → −a2, or simply the x width of the ellipsoid multiplied by q̃ in this limit.
The x width 
(y, z) is given by


 = 2ã

(
1 − y2

b̃2
− z2

c̃2

)1/2

, (B 4a)

→ 2ã

(
1 − y2

η̃2
− z2

τ̃ 2

)1/2

, (B 4b)

≡ 2ã
√

1 − �2, (B 4c)

as χ → −a2, where η2 = b2 − a2 and τ 2 = c2 − a2, cf. (3.3). Hence,

σ =
2qabc

ητ

√
1 − �2, (B 5a)

=
6κ

ητ

√
1 − �2. (B 5b)
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Appendix C. The ellipsoidal moment model
The ‘ellipsoidal moment model’ of Miyazaki et al. (2001), like the present ellipsoidal

model, uses the exact expression for the self-induced flow of a vortex, but uses a
moment expansion truncated to second order for vortex interactions. Here, we show
that the interaction Hamiltonian Hi found by Miyazaki et al. (2001) may be derived
as a limit of the discrete form of Hi used in the present work, i.e. (3.10).

Denote the centroid separation by R = X ′ − X , and define r ij ≡ x ′
i − xj − R. Note

that r ij = (ỹ ′
iη

′ b̂
′
+ z̃′

iτ
′ ĉ′) − (ỹj ηb̂ + z̃j τ ĉ). Let us expand Hi to second order in r ij /R,

where R = |R|, but use the fact that the sums over terms linear in r ij vanish by
symmetry (the sums over ỹj , z̃j , etc., are identically zero). The result is

Hi ≈ Ȟi =

n∑
i=1

n∑
j=1

κ ′
iκj

(
1

R
− |r ij |2

2R3
+

3(R · r ij )
2

2R5

)
. (C 1)

Next we carry out the sums, using the following results

n∑
j=1

κj = 1, (C 2)

n∑
j=1

κj ỹ
2
j =

n∑
j=1

κj z̃
2
j = 1

5
,

n∑
j=1

κj ỹj z̃j = 0, (C 3)

for all orders m > 0. Note (C 2) is required to match the zeroth-order moments of the
elliptical sheet, while (C 3) is required to match the second-order moments. It is then
straightforward to show

Ȟi = κ ′κ

(
1

R
− η′2 + τ ′2 + η2 + τ 2

10R3
+

3[(η′ b̂
′ · R)2 + (τ ′ ĉ′ · R)2 + (ηb̂ · R)2 + (τ ĉ · R)2]

10R5

)
,

(C 4a)

which reduces directly to the symmetric form

Ȟi = κ ′κ

(
1

R
− a′2 + b′2 + c′2 + a2 + b2 + c2

10R3

+
3[(a′ â′ · R)2 +(b′ b̂

′ · R)2 +(c′ ĉ′ · R)2 +(a â · R)2 +(bb̂ · R)2 +(cĉ · R)2]

10R5

)
, (C 4b)

independent of the order m. The discrete approximation is therefore not important,
but simply convenient in calculating the above. This result agrees with the result
obtained by Miyazaki et al. (2001), apart from notation.

The conclusion is that the moment model can be derived as an approximation to
the ellipsoidal model.

Appendix D. Derivatives of Hi

To compute the flow Ub and Sb induced by one ellipsoid {q ′, X ′, B′} on another
{q, X, B}, derivatives of Hi with respect to X and B are required, see (2.16). The
derivative with respect to X is simple, since in (3.10), ∂xj /∂X = I, the identity matrix.
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Hence,

∂Hi

∂X
=

n∑
i=1

n∑
j=1

κ ′
i κj

x ′
i − xj

|x ′
i − xj |3 . (D 1)

The derivative with respect to B is more complicated, and we follow the procedure
outlined in Appendix A, taking derivatives instead with respect to each element Bk

in the representation (A 10) of B. Since

∂Hi

∂Bk
=

n∑
i=1

n∑
j=1

κ ′
i κj

∂xj

∂Bk
· x ′

i − xj

|x ′
i − xj |3 , (D 2)

we need only work out

∂xj

∂Bk
= ỹj

(
∂η

∂Bk
b̂ + η

∂ b̂
∂Bk

)
+ z̃j

(
∂τ

∂Bk
ĉ + τ

∂ ĉ
∂Bk

)
. (D 3)

First of all, using (A 12) together with η =
√

b2 − a2 and τ =
√

c2 − a2, we have

∂η

∂Bk
=

1

2η

(
∂b2

∂Bk
− ∂a2

∂Bk

)
=

1

2η
(b̂

T Jk b̂ − âT Jk â), (D 4a)

∂τ

∂Bk
=

1

2τ

(
∂c2

∂Bk
− ∂a2

∂Bk

)
=

1

2τ
(ĉT Jk ĉ − âT Jk â). (D 4b)

The derivatives of the unit vectors, like the derivatives of the squared axis lengths,
are obtained by differentiating the eigen-relations Bâ = a2 â, etc., giving

Jk â + B ∂ â
∂Bk

=
∂a2

∂Bk
â + a2 ∂ â

∂Bk
, (D 5a)

Jk b̂ + B ∂ b̂
∂Bk

=
∂b2

∂Bk
b̂ + b2 ∂ b̂

∂Bk
, (D 5b)

Jk ĉ + B ∂ ĉ
∂Bk

=
∂c2

∂Bk
ĉ + c2 ∂ ĉ

∂Bk
. (D 5c)

Left multiplying (D 5b) by âT and ĉT , and also (D 5c) by âT and b̂
T
, we obtain

âT Jk b̂ = η2 âT ∂ b̂
∂Bk

, ĉT Jk b̂ = −ξ 2 ĉT ∂ b̂
∂Bk

, (D 6a)

âT Jk ĉ = τ 2 âT ∂ ĉ
∂Bk

, b̂
T Jk ĉ = ξ 2 b̂

T ∂ ĉ
∂Bk

, (D 6b)

where ξ 2 = c2 − b2. Since â, b̂ and ĉ are unit vectors, their derivatives are perpendicular
to them. Hence, the above equations are sufficient to determine the required
derivatives:

∂ b̂
∂Bk

=
1

η2
(âT Jk b̂)â − 1

ξ 2
(ĉT Jk b̂)ĉ, (D 7a)

∂ ĉ
∂Bk

=
1

τ 2
(âT Jk ĉ)â +

1

ξ 2
(b̂

T Jk ĉ)b̂. (D 7b)

Note that âT Jk b̂ = b̂
T Jk â, etc., are simple scalars, e.g. âT J1 b̂ = â1b̂1, âT J2 b̂ =

â1b̂2 + â2b̂1, and so forth.
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